Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle
نویسندگان
چکیده
BACKGROUND The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle. CONCLUSIONS/SIGNIFICANCE We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling.
منابع مشابه
Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance.
Increased fat deposition in skeletal muscle is associated with insulin resistance. However, exercise increases both intramyocellular fat stores and insulin sensitivity, a phenomenon referred to as "the athlete's paradox". In this study, we provide evidence that augmenting triglyceride synthesis in skeletal muscle is intrinsically connected with increased insulin sensitivity. Exercise increased ...
متن کاملParadoxical Coupling of Triglyceride Synthesis and Fatty Acid Oxidation in Skeletal Muscle Overexpressing DGAT1
OBJECTIVE Transgenic expression of diacylglycerol acyltransferase-1 (DGAT1) in skeletal muscle leads to protection against fat-induced insulin resistance despite accumulation of intramuscular triglyceride, a phenomenon similar to what is known as the "athlete paradox." The primary objective of this study is to determine how DGAT1 affects muscle fatty acid oxidation in relation to whole-body ene...
متن کاملSaturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin...
متن کاملDGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content.
In adipose tissue, the microsomal enzyme 1,2-acyl CoA:diacylglyceroltransferase-1 (DGAT1) plays an important role in triglyceride storage. Because DGAT1 is expressed in skeletal muscle as well, we aimed to directly test the effect of DGAT1 on muscular triglyceride storage by overexpressing DGAT1 using in vivo DNA electroporation. A pcDNA3.1-DGAT1 construct in saline was injected in the left tib...
متن کاملAltered Skeletal Muscle Lipase Expression and Activity Contribute to Insulin Resistance in Humans
OBJECTIVE Insulin resistance is associated with elevated content of skeletal muscle lipids, including triacylglycerols (TAGs) and diacylglycerols (DAGs). DAGs are by-products of lipolysis consecutive to TAG hydrolysis by adipose triglyceride lipase (ATGL) and are subsequently hydrolyzed by hormone-sensitive lipase (HSL). We hypothesized that an imbalance of ATGL relative to HSL (expression or a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011